
From Chicago to London, a Proposal for
Teaching Test-Driven Development

Nicolas Paez1[0000−0002−0453−4259]

Universidad Nacional de Tres de Febrero, Saenz Peña, Argentina
nicopaez@computer.org

Abstract. Test-Driven Development is a very popular software devel-
opment technique that offers well known benefits, but curiously it has
a very low usage rate in the industry. Some authors suggest that this
phenomenon can be due to a lack of knowledge and training. Aligned
with this situation this article presents an approach to teach Test-Driven
Development. The presented approach mixes Chicago and London Test-
Driven Development styles and complements them with other Extreme
Programming techniques. The described approach has been validated
with positive results in two Software Engineering courses.

Keywords: Test-Driven Development · Education · XP

1 Introduction

Test-Driven Development (TDD) is a software development technique proposed
by Kent Beck in the late ’90. It was later formalized in 2003 when he published
his book ”Test-Driven Development By Example”. This technique grew in popu-
larity hand in hand with Agile Software development methods and in particular
the method known as ”Extreme Programming”, also authored by Kent Beck.
The popularity of this technique caught the attention of the academia and TDD
was included in the computer science and information technology programs [1].
At the same time TDD has been the subject of several research projects and
publications.

The benefits of TDD have been widely discussed in both formal and informal
terms [2, 3]. However, the use of TDD in the industry is still very marginal, the
most optimistic publications report a usage rate lower than 30% [4, 5].

As some authors have suggested [6], this situation may be due to a lack
of knowledge and/or training on this technique. Aligned with this, the current
article presents a TDD teaching approach based on the combination of TDD
styles and some other Extreme Programming techniques.

2 The TDD Styles

As the name suggests, TDD proposes to guide the software development process
by using automated tests following three steps:

SAEI, Simposio Argentino de Educación en Informática

Memorias de las 52 JAIIO - SAEI - ISSN: 2451-7496 - Página 185



1. Red: write a test and execute it to see it fail.
2. Green: write the minimum code to make the test pass.
3. Refactor: review the written code to ensure its clarity and modify it if needed.

These three steps are repeated until all requirements are met. Like Kent Beck
explained [7], the technique can be applied at different abstraction levels, which
means that we can write ”small/unit” tests or ”large/acceptance” tests. These
different levels of abstraction lead to different styles of TDD. There are two
very popular styles that are usually referred as Chicago and London, because
of the software development communities that promoted them. These two styles
became very popular after the publication of a series of videos by Bob Martin
and Sandro Mancuso [8]. In these videos Bob (Chicago) and Sandro (London)
show and compare the development of an application using these two styles.

In order to understand the differences between these styles we need to have in
mind the Hexagonal Architecture Pattern which propose an explicit separation
of concerns between the application core logic (in the center of the hexagon)
and the adapters that connect it with the ”outside world” (in the borders of the
hexagon).

The Chicago style, also known as ”Classic”, proposes an inside-out develop-
ment flow. It starts developing the business logic components and then connect
them with the outside world by adding interface and adapter components. This
means that we start guiding the development with ”small/low-level” tests and
then we end with ”acceptance/high-level” tests.

The London style, also known as ”mockist”, because it uses mock objects,
proposes an outside-in development flow. It starts the development from the
outside world which is typically the user perspective and then, it dives into the
internals of the application. This means that we start guiding the development
with ”acceptance/high-level” tests and then we end with ”small/low-level” tests.
This style is very well documented in the book by Freeman and Pryce [9].

There are many publications about TDD, but just a few of them are focused
on TDD education/training and at January 2022 none of them were focused on
TDD styles.

3 The Proposed Approach

The proposed approach consists of starting by teaching TDD with the Chicago
style (inside-out) and solving small problems/applications which do not require
an external interface (or if they require one, it is a very simple one). This
way, there is no need to write high-level tests. Then, once the fundamentals of
the technique have been understood, moving on to study the London approach
(outside-in) and using more complex/larger applications/problems. At this point
we should also introduce mocking concepts. At the same time, this approach
complement the London TDD Style with with the usage of other Extreme Pro-
gramming techniques, since, as Kent Beck himself explains, the different Extreme
Programming practices complement each other. Particularly important for this

SAEI, Simposio Argentino de Educación en Informática

Memorias de las 52 JAIIO - SAEI - ISSN: 2451-7496 - Página 186



approach are the techniques of Continuous Integration, Pair Programming, and
User Stories.

The idea behind this proposal is that Chicago style allow us to focus in first
place in the implementation of the core components that encapsulate the busi-
ness logic that according to the hexagonal architecture should not depend on the
outside adapter components and its accidental complexities. This should make it
easier for the students to direct their attention to TDD dynamics. Once the stu-
dents dominate the TDD fundamentals, we can introduce the London approach
which fits very well in the overall Agile development process. In particular, when
requirements are modeled with User Stories, the acceptance criteria can be easy
translated to ”acceptance/high-level” tests that can trigger the outside-in TDD
flow. This way the students can see the Agile Process in action with a detail
guidance from requirements to code and tests. Of course that it is also possible
to work in an agile way with a classical TDD approach, but in that case the stu-
dents need more experience because the gap between ”User Stories/Acceptance
Criteria” and the low-level tests may not be easy to fill for novice developers. At
the same time, Pair-Programming can help students to overcome technical dif-
ficulties while Continuous Integration gives them constant feedback and ensures
that their code works also outside their own computers.

4 Validation and Results

This teaching approach has been used in the School of Engineering at Univer-
sity of Buenos Aires and also at National University of Tres de Febrero. In both
cases, students have a first contact with Test-Driven Development in Program-
ming courses of the first two years using a Chicago (inside-out) style. In these
courses the students learn TDD and Object-Oriented Programming. They apply
these techniques/concepts to solve small exercises/applications (without using
a database or a web server). Then, in a Software Engineering course (1 or 2
years later) they return to TDD but with an outside-in style and they use it to
solve larger exercises/applications. This Software Engineering Course is, in both
institutions, in charge of the author of this article.

It is observed that at the beginning of this Software Engineering course the
students understand TDD fundamentals and are able to apply it. But in general,
they are not convinced to use it. If they can choose, most of them prefer not
to use it and just use a Test-Last approach. During the Software Engineering
course, students learn the outside-in TDD style along with the complementary
Extreme Programming techniques mentioned in the previous section. In the
final part of the course the students use all the studied techniques together in
the development of a team project.

This teaching approach has been used since 2017, but it was not until 2022
that we decided to make a formal evaluation of it. Thus, once the second semester
of 2022 was over, the students of the Software Engineering course in both uni-
versities were surveyed. They were asked on whether they would use the devel-
opment approach studied. Specifically, the question asked was about the level

SAEI, Simposio Argentino de Educación en Informática

Memorias de las 52 JAIIO - SAEI - ISSN: 2451-7496 - Página 187



of agreement with the statement: ”I would use the development methodology
studied in my future projects” and the possible answers were: a) totally agree,
b) somewhat agree, c) neutral, d) somewhat in disagree, 3) totally disagree. The
results showed that 58.3 % answered ”Totally agree” while 35.5 % answered
”Somewhat agree”. It should be noted that all these students had passed the
course, which implies that they demonstrated knowledge of TDD and the com-
plementary techniques. The positive responses to the survey suggest that in
addition to learning the techniques, the students consider the software develop-
ment method studied to be convenient.

5 Conclusions and Future work

The experience described above indicates that start teaching TDD foundations
by using the Chicago style and then teach the London style with complementary
techniques and bigger problems/applications is effective. However, there are still
some aspects of the proposal that should be evaluated, such as the set of tools
and exercises used in the course. At the same time, there are implementation
details of this proposal that were not covered in this article but that are relevant
and that will be part of future publications.

Acknowledgments Some of the ideas presented in this article were refined
in talks with my colleges Diego Fontevila, Alejandra Zangara and Carlos Fontela.

References

1. Paez, N.: Enseñanza de Métdos Ágiles de Desarrollo de Software en Argentina.
Trabajo de Especialización. Universidad Nacional de La Plata (2020)

2. Khanam, Z. and Ahsan, M.N.: Evaluating the effectiveness of test driven develop-
ment: Advantages and pitfalls. International Journal of Applied Engineering Re-
search, 12(18), pp.7705-7716. 2017

3. Bissi, W., Serra Seca N., Adolfo G., Emer, M.: The effects of test driven develop-
ment on internal quality, external quality and productivity: A systematic review.
Information and Software Technology. 2(74), 45–54. (2016)

4. Annual State of Agile Report. Last accessed 8 May 2023
5. Paez, N., Fontdevila, D., Gainey, F., Oliveros, A.:, F.: Technical and Organizational

Agile Practices: A Latin-American Survey. Agile Processes in Software Engineering
and Extreme Programming. Springer International Publishing (2018)

6. Causevic, A., Sundmark, D., Punnekkat, S.: Factors limiting industrial adoption of
test driven development: A systematic review. Proceedings - 4th IEEE International
Conference on Software Testing, Verification, and Validation, ICST (2011)

7. Software Engineering Radio Episode 167: The History of JUnit and the Fu-
ture of Testing with Kent Beck https://www.se-radio.net/2010/09/episode-167-
the-history-of-junit-and-the-future-of-testing-with-kent-beck/. Last accessed 9 May
2023

8. Comparative Case Study: London vs. Chicago, https://bit.ly/3W1GtRl. Last ac-
cessed 8 May 2023

9. Freeman, S. Pryce, N.: Growing Object-Oriented Software, Guided by Tests. Pearson
Education (1999)

SAEI, Simposio Argentino de Educación en Informática

Memorias de las 52 JAIIO - SAEI - ISSN: 2451-7496 - Página 188


